If it's not what You are looking for type in the equation solver your own equation and let us solve it.
5x^2-64x-50=0
a = 5; b = -64; c = -50;
Δ = b2-4ac
Δ = -642-4·5·(-50)
Δ = 5096
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{5096}=\sqrt{196*26}=\sqrt{196}*\sqrt{26}=14\sqrt{26}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-64)-14\sqrt{26}}{2*5}=\frac{64-14\sqrt{26}}{10} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-64)+14\sqrt{26}}{2*5}=\frac{64+14\sqrt{26}}{10} $
| 7x+1=76 | | 2x-2+x+3=180 | | 0.1x-0.02=0 | | 3x-7/4=6.5 | | 64n−6=36n−1 | | -4e=-24 | | y/6-4=2 | | -4v+3v=8 | | 5=-x+6 | | X(2x+10)=12 | | |x|=x+2 | | 3w/2=54 | | x/7-9=4 | | (4x+8)/4=x+8 | | 12a+4=5a+60 | | x+0.9=195.11 | | -3=6+1x | | 11x+19x-8+1=-6x+1-8 | | 286=20-y | | 20=2/5x+8 | | Nx6=72 | | 10x+16=6x-16 | | 5x–1=19 | | 12w-27=-34+14w | | -3(-5n=1)=132 | | K+k+k+k=0 | | 0.4s+2.9=1.5 | | x+4/7=x-2/7 | | 5y-12=30 | | 3(3v=4)=102 | | 8w-5w+w=0 | | t(t)=5t-7 |